{"title":"A Kinematic Study of Individual Rotating Detonation Engine Waves Using K-means Algorithm","authors":"Taha Rezzag, R. Burke, K. Ahmed","doi":"10.1115/gt2021-58814","DOIUrl":null,"url":null,"abstract":"\n The current research is concerned with studying the instantaneous properties of the detonation waves in a RDRE by tracking each individual wave and recording its position, velocity, and peak intensity as it travels around the annulus. This information is retrieved by a non-intrusive method consisting of using a data mining technique, the k-means algorithm, to distinguish each detonation from each other in a particular frame. An algorithm was then developed to match the detonations of a current frame to the ones of a previous frame. The code was validated against results found from the back-end imaging method developed by the Air Force Research Laboratory with excellent agreement. Results for two and three-wave mode cases show that the instantaneous detonation wave speeds oscillate around the mode locked average wave speed computed from a detonation surface. Moreover, the investigation of the relationship of the detonation’s peak light intensity with the azimuthal position revealed to also be oscillatory but more distinct.","PeriodicalId":121836,"journal":{"name":"Volume 3A: Combustion, Fuels, and Emissions","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3A: Combustion, Fuels, and Emissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The current research is concerned with studying the instantaneous properties of the detonation waves in a RDRE by tracking each individual wave and recording its position, velocity, and peak intensity as it travels around the annulus. This information is retrieved by a non-intrusive method consisting of using a data mining technique, the k-means algorithm, to distinguish each detonation from each other in a particular frame. An algorithm was then developed to match the detonations of a current frame to the ones of a previous frame. The code was validated against results found from the back-end imaging method developed by the Air Force Research Laboratory with excellent agreement. Results for two and three-wave mode cases show that the instantaneous detonation wave speeds oscillate around the mode locked average wave speed computed from a detonation surface. Moreover, the investigation of the relationship of the detonation’s peak light intensity with the azimuthal position revealed to also be oscillatory but more distinct.