Hierarchical local model trees for design of experiments in the framework of ultrasonic structural health monitoring

Benjamin Hartmann, J. Moll, O. Nelles, C. Fritzen
{"title":"Hierarchical local model trees for design of experiments in the framework of ultrasonic structural health monitoring","authors":"Benjamin Hartmann, J. Moll, O. Nelles, C. Fritzen","doi":"10.1109/CCA.2011.6044489","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective and time-saving algorithm for model-based design of experiments in the framework of a structural health monitoring system. The goal is to identify and locate structural defects in plate-like geometries. The new idea combines a pseudo-random Monte-Carlo sampling with a local model network. The global distribution of data points is based on the input space partitioning which can be seen as a mapping of the non-linearities of the underlying process. This results in an active learning strategy that incorporates the process behavior into the experimental design strategy. The application of the proposed algorithm for ultrasonic imaging in an isotropic non-convex structure shows great potential. It is shown that in contrast to a grid-based approach the spatial discretization can be optimized with high accuracy and adaptivity.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose an effective and time-saving algorithm for model-based design of experiments in the framework of a structural health monitoring system. The goal is to identify and locate structural defects in plate-like geometries. The new idea combines a pseudo-random Monte-Carlo sampling with a local model network. The global distribution of data points is based on the input space partitioning which can be seen as a mapping of the non-linearities of the underlying process. This results in an active learning strategy that incorporates the process behavior into the experimental design strategy. The application of the proposed algorithm for ultrasonic imaging in an isotropic non-convex structure shows great potential. It is shown that in contrast to a grid-based approach the spatial discretization can be optimized with high accuracy and adaptivity.
基于层次局部模型树的超声结构健康监测实验设计
本文提出了一种有效且省时的结构健康监测系统模型实验设计算法。目标是识别和定位板状几何结构缺陷。该方法将伪随机蒙特卡罗抽样与局部模型网络相结合。数据点的全局分布是基于输入空间划分的,这可以看作是底层过程非线性的映射。这就形成了一种主动学习策略,它将过程行为融入到实验设计策略中。该算法应用于各向同性非凸结构的超声成像显示出巨大的潜力。结果表明,与基于网格的方法相比,该方法具有较高的优化精度和自适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信