Huize Li, Hai Jin, Long Zheng, Yu Huang, Xiaofei Liao, Zhuohui Duan, Dan Chen, Chuangyi Gui
{"title":"ReSMA","authors":"Huize Li, Hai Jin, Long Zheng, Yu Huang, Xiaofei Liao, Zhuohui Duan, Dan Chen, Chuangyi Gui","doi":"10.1145/3489517.3530559","DOIUrl":null,"url":null,"abstract":"Approximate string matching (ASM) functions as the basic operation kernel for a large number of string processing applications. Existing Von-Neumann-based ASM accelerators suffer from huge intermediate data with the ever-increasing string data, leading to massive off-chip data transmissions. This paper presents a novel ASM processing-in-memory (PIM) accelerator, namely ReSMA, based on ReCAM- and ReRAM-arrays to eliminate the off-chip data transmissions in ASM. We develop a novel ReCAM-friendly filter-and-filtering algorithm to process the q-grams filtering in ReCAM memory. We also design a new data mapping strategy and a new verification algorithm, which enables computing the edit distances totally in ReRAM crossbars for energy saving. Experimental results show that ReSMA outperforms the CPU-, GPU-, FPGA-, ASIC-, and PIM-based solutions by 268.7×, 38.6×, 20.9×, 707.8×, and 14.7× in terms of performance, and 153.8×, 42.2×, 31.6×, 18.3×, and 5.3× in terms of energy-saving, respectively.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Approximate string matching (ASM) functions as the basic operation kernel for a large number of string processing applications. Existing Von-Neumann-based ASM accelerators suffer from huge intermediate data with the ever-increasing string data, leading to massive off-chip data transmissions. This paper presents a novel ASM processing-in-memory (PIM) accelerator, namely ReSMA, based on ReCAM- and ReRAM-arrays to eliminate the off-chip data transmissions in ASM. We develop a novel ReCAM-friendly filter-and-filtering algorithm to process the q-grams filtering in ReCAM memory. We also design a new data mapping strategy and a new verification algorithm, which enables computing the edit distances totally in ReRAM crossbars for energy saving. Experimental results show that ReSMA outperforms the CPU-, GPU-, FPGA-, ASIC-, and PIM-based solutions by 268.7×, 38.6×, 20.9×, 707.8×, and 14.7× in terms of performance, and 153.8×, 42.2×, 31.6×, 18.3×, and 5.3× in terms of energy-saving, respectively.