An open problem on metric invariants of tetrahedra

Lu Yang, Zhenbing Zeng
{"title":"An open problem on metric invariants of tetrahedra","authors":"Lu Yang, Zhenbing Zeng","doi":"10.1145/1073884.1073934","DOIUrl":null,"url":null,"abstract":"In ISSAC 2000, P. Lisoněk and R.B. Israel [3] asked whether, for any given positive real constants V,R,A1,A2,A3,A4, there are always finitely many tetrahedra, all having these values as their respective volume, circumradius and four face areas. In this paper we present a negative solution to this problem by constructing a family of tetrahedra T(x,y) where $(x,y)$ varies over a component of a cubic curve such that all tetrahedra T(x,y) share the same volume, circumradius and face areas.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In ISSAC 2000, P. Lisoněk and R.B. Israel [3] asked whether, for any given positive real constants V,R,A1,A2,A3,A4, there are always finitely many tetrahedra, all having these values as their respective volume, circumradius and four face areas. In this paper we present a negative solution to this problem by constructing a family of tetrahedra T(x,y) where $(x,y)$ varies over a component of a cubic curve such that all tetrahedra T(x,y) share the same volume, circumradius and face areas.
四面体度量不变量的一个开放问题
在ISSAC 2000中,P. lison k和R. b . Israel[3]问,对于任何给定的正实常数V,R,A1,A2,A3,A4,是否总是有有限多个四面体,它们的体积,周长和四个面面积都有这些值。在本文中,我们通过构造一个四面体族T(x,y)给出了这个问题的一个负解,其中$(x,y)$在三次曲线的一个分量上变化,使得所有的四面体T(x,y)具有相同的体积,圆周半径和面面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信