{"title":"A note on symmetric orderings","authors":"Zoran vSkoda","doi":"10.32817/AMS.1.1.5","DOIUrl":null,"url":null,"abstract":"Let A^n be the completion by the degree of a differential operator of the n-th Weyl algebra with generators x1,…,xn,∂1,…,∂n. Consider n elements X1,…,Xn in A^n of the formXi=xi+∑K=1∞∑l=1n∑j=1nxlpijK−1,l(∂)∂j,where pijK−1,l(∂) is a degree (K−1) homogeneous polynomial in ∂1,…,∂n, antisymmetric in subscripts i,j. Then for any natural k and any function i:{1,…,k}→{1,…,n} we prove∑σ∈Σ(k)Xiσ(1)⋯Xiσ(k)▹1=k!xi1⋯xik,where Σ(k) is the symmetric group on k letters and ▹ denotes the Fock action of the A^n on the space of (commutative) polynomials.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/AMS.1.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Let A^n be the completion by the degree of a differential operator of the n-th Weyl algebra with generators x1,…,xn,∂1,…,∂n. Consider n elements X1,…,Xn in A^n of the formXi=xi+∑K=1∞∑l=1n∑j=1nxlpijK−1,l(∂)∂j,where pijK−1,l(∂) is a degree (K−1) homogeneous polynomial in ∂1,…,∂n, antisymmetric in subscripts i,j. Then for any natural k and any function i:{1,…,k}→{1,…,n} we prove∑σ∈Σ(k)Xiσ(1)⋯Xiσ(k)▹1=k!xi1⋯xik,where Σ(k) is the symmetric group on k letters and ▹ denotes the Fock action of the A^n on the space of (commutative) polynomials.