{"title":"A Markov Model of Users’ Interactive Behavior in Scatterplots","authors":"Emily Wall, Arup Arcalgud, Kuhu Gupta, Andrew Jo","doi":"10.1109/VISUAL.2019.8933779","DOIUrl":null,"url":null,"abstract":"Recently, Wall et al. proposed a set of computational metrics for quantifying cognitive bias based on user interaction sequences. The metrics rely on a Markov model to predict a user’s next interaction based on the current interaction. The metrics characterize how a user’s actual interactive behavior deviates from a theoretical baseline, where \"unbiased behavior\" was previously defined to be equal probabilities of all interactions. In this paper, we analyze the assumptions made of these metrics. We conduct a study in which participants, subject to anchoring bias, interact with a scatterplot to complete a categorization task. Our results indicate that, rather than equal probabilities of all interactions, unbiased behavior across both bias conditions can be better approximated by proximity of data points.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Recently, Wall et al. proposed a set of computational metrics for quantifying cognitive bias based on user interaction sequences. The metrics rely on a Markov model to predict a user’s next interaction based on the current interaction. The metrics characterize how a user’s actual interactive behavior deviates from a theoretical baseline, where "unbiased behavior" was previously defined to be equal probabilities of all interactions. In this paper, we analyze the assumptions made of these metrics. We conduct a study in which participants, subject to anchoring bias, interact with a scatterplot to complete a categorization task. Our results indicate that, rather than equal probabilities of all interactions, unbiased behavior across both bias conditions can be better approximated by proximity of data points.