Topological properties of hyperspaces

R. Beshimov, D. Safarova
{"title":"Topological properties of hyperspaces","authors":"R. Beshimov, D. Safarova","doi":"10.56017/2181-1318.1017","DOIUrl":null,"url":null,"abstract":"In the work, it is given the normal functor F acting in the category of compacts and their continuous mappings. This functor does not preserve the Souslin number (or hereditary cellularity), the hereditary density, the hereditary π-weight and the hereditary Shanin number, the hereditary caliber, the hereditary precaliber, the hereditary preshanin number, the hereditary weak density, the hereditary Lindelöf number, and the hereditary extent of a compact. The example of the normal functor and the compact of Aleksandorv’s two arrows are given. We study the action of functors expn, expω, expc and exp on finally compact, hereditarily disconnected, strongly zero-dimensional, extremely disconnected, paracompact spaces.","PeriodicalId":127023,"journal":{"name":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56017/2181-1318.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the work, it is given the normal functor F acting in the category of compacts and their continuous mappings. This functor does not preserve the Souslin number (or hereditary cellularity), the hereditary density, the hereditary π-weight and the hereditary Shanin number, the hereditary caliber, the hereditary precaliber, the hereditary preshanin number, the hereditary weak density, the hereditary Lindelöf number, and the hereditary extent of a compact. The example of the normal functor and the compact of Aleksandorv’s two arrows are given. We study the action of functors expn, expω, expc and exp on finally compact, hereditarily disconnected, strongly zero-dimensional, extremely disconnected, paracompact spaces.
超空间的拓扑性质
本文给出了作用于紧的范畴及其连续映射中的正规函子F。该函子不保留苏斯林数(或遗传细胞数)、遗传密度、遗传π重和遗传沙宁数、遗传口径、遗传前口径、遗传前沙宁数、遗传弱密度、遗传Lindelöf数和密实的遗传程度。给出了正常函子的例子和Aleksandorv的两个箭头的紧致。研究了函子expn, expω, expc和exp在最终紧、遗传不紧、强零维、极度不紧、准紧空间上的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信