Real time texture classification using field programmable gate arrays

Geoffrey Wall, Faizal Iqbal, J. Isaacs, Xiuwen Liu, S. Foo
{"title":"Real time texture classification using field programmable gate arrays","authors":"Geoffrey Wall, Faizal Iqbal, J. Isaacs, Xiuwen Liu, S. Foo","doi":"10.1109/AIPR.2004.38","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel hardware/software approach to implement a highly accurate texture classification algorithm. We propose the use of field programmable gate arrays (FPGAs) to efficiently compute multiple convolutions in parallel that is required by the spectral histogram representation we employ. The combination of custom hardware and software allows us to have a classifier that is able to achieve results of over 99% accuracy at a rate of roughly 6000 image classifications per second on a challenging real texture dataset.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we present a novel hardware/software approach to implement a highly accurate texture classification algorithm. We propose the use of field programmable gate arrays (FPGAs) to efficiently compute multiple convolutions in parallel that is required by the spectral histogram representation we employ. The combination of custom hardware and software allows us to have a classifier that is able to achieve results of over 99% accuracy at a rate of roughly 6000 image classifications per second on a challenging real texture dataset.
使用现场可编程门阵列的实时纹理分类
本文提出了一种新的硬件/软件方法来实现高精度的纹理分类算法。我们建议使用现场可编程门阵列(fpga)来有效地并行计算我们采用的光谱直方图表示所需的多个卷积。定制硬件和软件的结合使我们能够在具有挑战性的真实纹理数据集上以每秒大约6000个图像分类的速度实现超过99%准确率的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信