A Robust Recession Detective Analysis System using IoT Smart Sensor Devices

N. P, M. V, C. Rupesh, B. Kartheek, Y. Lekhya, K. Swetha
{"title":"A Robust Recession Detective Analysis System using IoT Smart Sensor Devices","authors":"N. P, M. V, C. Rupesh, B. Kartheek, Y. Lekhya, K. Swetha","doi":"10.1109/ICECAA58104.2023.10212166","DOIUrl":null,"url":null,"abstract":"This study suggests a wearable gadget with an autonomous fall detector that can lower risks by identifying falls and notifying care takers right away. This research study combines a heart-rate sensor and an accelerometer to create a user-adaptive fall detection system based on cluster analysis. The suggested fall detector seeks to achieve high accuracy using a simple model under a variety of circumstances. Additionally, this research study tests the efficiency of the cluster-analysis-based anomaly identification as well as the performance improvement of combining a heart rate sensor and an accelerometer. This study also demonstrates the utility of the user-adaptive approach when using both acceleration and heart rate inputs. The system will alert the carer through GSM if the user's orientation data values become aberrant in any way. The system design takes into account a straightforward, inexpensive, and power-efficient design.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study suggests a wearable gadget with an autonomous fall detector that can lower risks by identifying falls and notifying care takers right away. This research study combines a heart-rate sensor and an accelerometer to create a user-adaptive fall detection system based on cluster analysis. The suggested fall detector seeks to achieve high accuracy using a simple model under a variety of circumstances. Additionally, this research study tests the efficiency of the cluster-analysis-based anomaly identification as well as the performance improvement of combining a heart rate sensor and an accelerometer. This study also demonstrates the utility of the user-adaptive approach when using both acceleration and heart rate inputs. The system will alert the carer through GSM if the user's orientation data values become aberrant in any way. The system design takes into account a straightforward, inexpensive, and power-efficient design.
基于物联网智能传感器设备的稳健衰退检测分析系统
这项研究提出了一种带有自动跌倒探测器的可穿戴设备,可以通过识别跌倒并立即通知护理人员来降低风险。本研究结合心率传感器和加速度计,创建了一个基于聚类分析的用户自适应跌倒检测系统。建议的跌落检测器试图在各种情况下使用一个简单的模型来实现高精度。此外,本研究还测试了基于聚类分析的异常识别效率,以及结合心率传感器和加速度传感器的性能改进。本研究还展示了用户自适应方法在同时使用加速和心率输入时的效用。如果用户的方位数据值出现任何异常,系统将通过GSM向护理人员发出警报。系统设计考虑了简单、廉价和节能的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信