Attention-Based Audio Embeddings for Query-by-Example

Anup Singh, Kris Demuynck, Vipul Arora
{"title":"Attention-Based Audio Embeddings for Query-by-Example","authors":"Anup Singh, Kris Demuynck, Vipul Arora","doi":"10.48550/arXiv.2210.08624","DOIUrl":null,"url":null,"abstract":"An ideal audio retrieval system efficiently and robustly recognizes a short query snippet from an extensive database. However, the performance of well-known audio fingerprinting systems falls short at high signal distortion levels. This paper presents an audio retrieval system that generates noise and reverberation robust audio fingerprints using the contrastive learning framework. Using these fingerprints, the method performs a comprehensive search to identify the query audio and precisely estimate its timestamp in the reference audio. Our framework involves training a CNN to maximize the similarity between pairs of embeddings extracted from clean audio and its corresponding distorted and time-shifted version. We employ a channel-wise spectral-temporal attention mechanism to better discriminate the audio by giving more weight to the salient spectral-temporal patches in the signal. Experimental results indicate that our system is efficient in computation and memory usage while being more accurate, particularly at higher distortion levels, than competing state-of-the-art systems and scalable to a larger database.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"558 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An ideal audio retrieval system efficiently and robustly recognizes a short query snippet from an extensive database. However, the performance of well-known audio fingerprinting systems falls short at high signal distortion levels. This paper presents an audio retrieval system that generates noise and reverberation robust audio fingerprints using the contrastive learning framework. Using these fingerprints, the method performs a comprehensive search to identify the query audio and precisely estimate its timestamp in the reference audio. Our framework involves training a CNN to maximize the similarity between pairs of embeddings extracted from clean audio and its corresponding distorted and time-shifted version. We employ a channel-wise spectral-temporal attention mechanism to better discriminate the audio by giving more weight to the salient spectral-temporal patches in the signal. Experimental results indicate that our system is efficient in computation and memory usage while being more accurate, particularly at higher distortion levels, than competing state-of-the-art systems and scalable to a larger database.
基于注意的音频嵌入,用于按例查询
一个理想的音频检索系统可以有效地、鲁棒地从庞大的数据库中识别短查询片段。然而,众所周知的音频指纹识别系统在高信号失真水平下表现不佳。本文提出了一种利用对比学习框架生成噪声和混响鲁棒音频指纹的音频检索系统。该方法利用这些指纹进行综合搜索,以识别查询音频,并精确估计其在参考音频中的时间戳。我们的框架包括训练CNN,以最大限度地提高从干净音频中提取的嵌入对与其相应的失真和时移版本之间的相似性。我们采用了一种信道频谱-时间注意机制,通过赋予信号中显著的频谱-时间斑块更多的权重来更好地区分音频。实验结果表明,我们的系统在计算和内存使用方面效率很高,同时比竞争对手的最先进的系统更准确,特别是在更高的失真水平下,并且可扩展到更大的数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信