Improving histology images segmentation through spatial constraints and supervision

Nicolas Hervé, A. Servais, E. Thervet, J. Olivo-Marin, V. Meas-Yedid
{"title":"Improving histology images segmentation through spatial constraints and supervision","authors":"Nicolas Hervé, A. Servais, E. Thervet, J. Olivo-Marin, V. Meas-Yedid","doi":"10.1109/ICIP.2010.5652083","DOIUrl":null,"url":null,"abstract":"We introduce two approaches to improve an existing color segmentation technique based on a Split and Merge quantization process for the study of stained histological images. We propose to modify the merge criterion : first, we include a spatial constraints heuristic; then we suggest the use of supervision and a more elaborated visual features representation. We tested these approaches on a renal biopsies dataset to automatically quantify interstitial fibrosis and show that supervision brings very significant improvements.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5652083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce two approaches to improve an existing color segmentation technique based on a Split and Merge quantization process for the study of stained histological images. We propose to modify the merge criterion : first, we include a spatial constraints heuristic; then we suggest the use of supervision and a more elaborated visual features representation. We tested these approaches on a renal biopsies dataset to automatically quantify interstitial fibrosis and show that supervision brings very significant improvements.
通过空间约束和监督改进组织学图像分割
我们介绍了两种方法来改进现有的基于分割和合并量化过程的颜色分割技术,用于研究染色的组织学图像。我们提出对合并准则进行修改:首先,我们加入一个空间约束启发式;然后,我们建议使用监督和更详细的视觉特征表示。我们在肾活检数据集上测试了这些方法,以自动量化间质纤维化,并表明监督带来了非常显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信