R. Ewerth, Matthias Springstein, Eric Müller, Alexander Balz, Jan Gehlhaar, T. Naziyok, K. Dembczynski, E. Hüllermeier
{"title":"Estimating relative depth in single images via rankboost","authors":"R. Ewerth, Matthias Springstein, Eric Müller, Alexander Balz, Jan Gehlhaar, T. Naziyok, K. Dembczynski, E. Hüllermeier","doi":"10.1109/ICME.2017.8019434","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to estimate the relative depth of regions in monocular images. There are several contributions. First, the task of monocular depth estimation is considered as a learning-to-rank problem which offers several advantages compared to regression approaches. Second, monocular depth clues of human perception are modeled in a systematic manner. Third, we show that these depth clues can be modeled and integrated appropriately in a Rankboost framework. For this purpose, a space-efficient version of Rankboost is derived that makes it applicable to rank a large number of objects, as posed by the given problem. Finally, the monocular depth clues are combined with results from a deep learning approach. Experimental results show that the error rate is reduced by adding the monocular features while outperforming state-of-the-art systems.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we present a novel approach to estimate the relative depth of regions in monocular images. There are several contributions. First, the task of monocular depth estimation is considered as a learning-to-rank problem which offers several advantages compared to regression approaches. Second, monocular depth clues of human perception are modeled in a systematic manner. Third, we show that these depth clues can be modeled and integrated appropriately in a Rankboost framework. For this purpose, a space-efficient version of Rankboost is derived that makes it applicable to rank a large number of objects, as posed by the given problem. Finally, the monocular depth clues are combined with results from a deep learning approach. Experimental results show that the error rate is reduced by adding the monocular features while outperforming state-of-the-art systems.