Delay-aware TDMA Scheduling with Deep Reinforcement Learning in Tactical MANET

Gwan-sik Wi, Sunghwa Son, Kyung-Joon Park
{"title":"Delay-aware TDMA Scheduling with Deep Reinforcement Learning in Tactical MANET","authors":"Gwan-sik Wi, Sunghwa Son, Kyung-Joon Park","doi":"10.1109/ICTC49870.2020.9289080","DOIUrl":null,"url":null,"abstract":"In tactical networks, traffic should be delivered in a timely manner satisfying the quality of service (QoS) requirements for survivability and mission success. In this paper, we propose a centralized TDMA slot scheduling based on deep reinforcement learning (DRL) to guarantee the QoS requirements by minimizing end-to-end delay. We consider situations in which mission criticality of tactical traffic is dynamically changing. We introduce a DRL actor-critic algorithm to find a TDMA scheduling policy to minimize the weighted end-to-end delay which is a new metric reflecting the mission criticality of tactical traffic. The simulation results verify that the proposed scheduling policy can guarantee QoS requirements in tactical networks.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In tactical networks, traffic should be delivered in a timely manner satisfying the quality of service (QoS) requirements for survivability and mission success. In this paper, we propose a centralized TDMA slot scheduling based on deep reinforcement learning (DRL) to guarantee the QoS requirements by minimizing end-to-end delay. We consider situations in which mission criticality of tactical traffic is dynamically changing. We introduce a DRL actor-critic algorithm to find a TDMA scheduling policy to minimize the weighted end-to-end delay which is a new metric reflecting the mission criticality of tactical traffic. The simulation results verify that the proposed scheduling policy can guarantee QoS requirements in tactical networks.
战术自组网中基于深度强化学习的延迟感知TDMA调度
在战术网络中,通信量应及时交付,以满足生存性和任务成功的服务质量(QoS)要求。在本文中,我们提出了一种基于深度强化学习(DRL)的集中式TDMA时隙调度,通过最小化端到端延迟来保证QoS要求。我们考虑了战术交通任务关键度动态变化的情况。提出了一种DRL actor- critical算法来寻找一种TDMA调度策略,使加权端到端延迟最小化,这是一种反映战术通信量任务临界性的新度量。仿真结果验证了所提出的调度策略能够保证战术网络的QoS要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信