Automatic Identification of Circulating Tumor Cells in Fluorescence Microscopy Images Based on ANN

Kouki Tsuji, Huimin Lu, J. Tan, Hyoungseop Kim, K. Yoneda, F. Tanaka
{"title":"Automatic Identification of Circulating Tumor Cells in Fluorescence Microscopy Images Based on ANN","authors":"Kouki Tsuji, Huimin Lu, J. Tan, Hyoungseop Kim, K. Yoneda, F. Tanaka","doi":"10.1145/3133793.3133798","DOIUrl":null,"url":null,"abstract":"Circulating tumor cells (CTCs) are a useful biomarker since they may have some information about cancer metastasis. The blood from cancer patient is analyzed by a fluorescence microscope. It takes a large number of photos for each case, and many cells are contained in the microscopy images. Thus, analyzing them is hard work for pathologists. This work tends to depend on the individual skill of pathologist so misdiagnosis may be happen. In this paper, we develop an automatic CTCs identification method in fluorescence microscopy images based on artificial neural network. We applied our proposed method to 5040 microscopy images (6 cases), and evaluated the effectiveness of our method by using leave-one-out cross validation. We achieve a true positive rate of 98.65 [%] and a false positive rate of 18.24 [%].","PeriodicalId":217183,"journal":{"name":"Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133793.3133798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Circulating tumor cells (CTCs) are a useful biomarker since they may have some information about cancer metastasis. The blood from cancer patient is analyzed by a fluorescence microscope. It takes a large number of photos for each case, and many cells are contained in the microscopy images. Thus, analyzing them is hard work for pathologists. This work tends to depend on the individual skill of pathologist so misdiagnosis may be happen. In this paper, we develop an automatic CTCs identification method in fluorescence microscopy images based on artificial neural network. We applied our proposed method to 5040 microscopy images (6 cases), and evaluated the effectiveness of our method by using leave-one-out cross validation. We achieve a true positive rate of 98.65 [%] and a false positive rate of 18.24 [%].
基于神经网络的荧光显微图像循环肿瘤细胞自动识别
循环肿瘤细胞(CTCs)是一种有用的生物标志物,因为它们可能提供一些肿瘤转移的信息。用荧光显微镜分析癌症病人的血液。每个病例需要拍摄大量的照片,显微镜图像中包含许多细胞。因此,对病理学家来说,分析它们是一项艰巨的工作。这项工作往往依赖于病理学家的个人技能,因此可能会发生误诊。本文提出了一种基于人工神经网络的荧光显微图像ctc自动识别方法。我们将所提出的方法应用于5040张显微镜图像(6例),并通过留一交叉验证来评估我们的方法的有效性。我们的真阳性率为98.65[%],假阳性率为18.24[%]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信