Using Polyhedral Analysis to Verify OpenMP Applications are Data Race Free

Fangke Ye, M. Schordan, C. Liao, Pei-Hung Lin, I. Karlin, Vivek Sarkar
{"title":"Using Polyhedral Analysis to Verify OpenMP Applications are Data Race Free","authors":"Fangke Ye, M. Schordan, C. Liao, Pei-Hung Lin, I. Karlin, Vivek Sarkar","doi":"10.1109/Correctness.2018.00010","DOIUrl":null,"url":null,"abstract":"Among the most common and hardest to debug types of bugs in concurrent systems are data races. In this paper, we present an approach for verifying that an OpenMP program is data race free. We use polyhedral analysis to verify those parts of the program where we detect parallel affine loop nests. We show the applicability of polyhedral analysis with analysis-enabling program transformations for data race detection in HPC applications. We evaluate our approach with the dedicated data race benchmark suite DataRaceBench and the LLNL Proxy Application AMG2013 which consists of 75,000 LOC. Our evaluation shows that polyhedral analysis can classify 40% of the DataRaceBench 1.2.0 benchmarks as either data race free or having data races, and verify that 41 of the 114 (36%) loop nests of AMG2013 are data race free.","PeriodicalId":217525,"journal":{"name":"2018 IEEE/ACM 2nd International Workshop on Software Correctness for HPC Applications (Correctness)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 2nd International Workshop on Software Correctness for HPC Applications (Correctness)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Correctness.2018.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Among the most common and hardest to debug types of bugs in concurrent systems are data races. In this paper, we present an approach for verifying that an OpenMP program is data race free. We use polyhedral analysis to verify those parts of the program where we detect parallel affine loop nests. We show the applicability of polyhedral analysis with analysis-enabling program transformations for data race detection in HPC applications. We evaluate our approach with the dedicated data race benchmark suite DataRaceBench and the LLNL Proxy Application AMG2013 which consists of 75,000 LOC. Our evaluation shows that polyhedral analysis can classify 40% of the DataRaceBench 1.2.0 benchmarks as either data race free or having data races, and verify that 41 of the 114 (36%) loop nests of AMG2013 are data race free.
使用多面体分析来验证OpenMP应用程序是无数据竞争的
并发系统中最常见和最难调试的错误类型是数据争用。在本文中,我们提出了一种验证OpenMP程序是无数据竞争的方法。我们使用多面体分析来验证程序中检测到平行仿射环巢的部分。我们展示了多面体分析与支持分析的程序转换在HPC应用程序中的数据竞争检测的适用性。我们使用专用的数据竞赛基准套件DataRaceBench和包含75,000 LOC的LLNL代理应用程序AMG2013来评估我们的方法。我们的评估表明,多面体分析可以将40%的DataRaceBench 1.2.0基准测试分类为无数据竞争或有数据竞争,并验证AMG2013的114个循环巢中有41个(36%)是无数据竞争的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信