{"title":"A new proof of finiteness of maximal arithmetic reflection groups","authors":"D. Fisher, Sebastián Hurtado","doi":"10.5802/ahl.162","DOIUrl":null,"url":null,"abstract":"We give a new proof of the finiteness of maximal arithmetic reflection groups. Our proof is novel in that it makes no use of trace formulas or other tools from the theory of automorphic forms and instead relies on the arithmetic Margulis lemma of Fraczyk, Hurtado and Raimbault.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We give a new proof of the finiteness of maximal arithmetic reflection groups. Our proof is novel in that it makes no use of trace formulas or other tools from the theory of automorphic forms and instead relies on the arithmetic Margulis lemma of Fraczyk, Hurtado and Raimbault.