Zilin Song, Shuolei Wang, Weikai Kong, Xiangjun Peng, Xu Sun
{"title":"First attempt to build realistic driving scenes using video-to-video synthesis in OpenDS framework","authors":"Zilin Song, Shuolei Wang, Weikai Kong, Xiangjun Peng, Xu Sun","doi":"10.1145/3349263.3351497","DOIUrl":null,"url":null,"abstract":"Existing programmable simulators enable researchers to customize different driving scenarios to conduct in-lab automotive driver simulations. However, software-based simulators for cognitive research generate and maintain their scenes with the support of 3D engines, which may affect users' experiences to a certain degree since they are not sufficiently realistic. Now, a critical issue is the question of how to build scenes into real-world ones. In this paper, we introduce the first step in utilizing video-to-video synthesis, which is a deep learning approach, in OpenDS framework, which is an open-source driving simulator software, to present simulated scenes as realistically as possible. Off-line evaluations demonstrated promising results from our study, and our future work will focus on how to merge them appropriately to build a close-to-reality, real-time driving simulator.","PeriodicalId":237150,"journal":{"name":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349263.3351497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Existing programmable simulators enable researchers to customize different driving scenarios to conduct in-lab automotive driver simulations. However, software-based simulators for cognitive research generate and maintain their scenes with the support of 3D engines, which may affect users' experiences to a certain degree since they are not sufficiently realistic. Now, a critical issue is the question of how to build scenes into real-world ones. In this paper, we introduce the first step in utilizing video-to-video synthesis, which is a deep learning approach, in OpenDS framework, which is an open-source driving simulator software, to present simulated scenes as realistically as possible. Off-line evaluations demonstrated promising results from our study, and our future work will focus on how to merge them appropriately to build a close-to-reality, real-time driving simulator.