{"title":"Episode-Rule Mining with Minimal Occurrences via First Local Maximization in Confidence","authors":"H. K. Dai","doi":"10.1145/3287921.3287982","DOIUrl":null,"url":null,"abstract":"An episode rule of associating two episodes represents a temporal implication of the antecedent episode to the consequent episode. Episode-rule mining is a task of extracting useful patterns/episodes from large event databases. We present an episode-rule mining algorithm for finding frequent and confident serial-episode rules via first local-maximum confidence in yielding ideal window widths, if exist, in event sequences based on minimal occurrences constrained by a constant maximum gap. Results from our preliminary empirical study confirm the applicability of the episode-rule mining algorithm for Web-site traversal-pattern discovery, and show that the first local maximization yielding ideal window widths exists in real data but rarely in synthetic random data sets.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An episode rule of associating two episodes represents a temporal implication of the antecedent episode to the consequent episode. Episode-rule mining is a task of extracting useful patterns/episodes from large event databases. We present an episode-rule mining algorithm for finding frequent and confident serial-episode rules via first local-maximum confidence in yielding ideal window widths, if exist, in event sequences based on minimal occurrences constrained by a constant maximum gap. Results from our preliminary empirical study confirm the applicability of the episode-rule mining algorithm for Web-site traversal-pattern discovery, and show that the first local maximization yielding ideal window widths exists in real data but rarely in synthetic random data sets.