Co-expressed gene group analysis (CGGA): An automatic tool for the interpretation of microarray experiments

Ricardo Martínez, Nicolas Pasquier, C. Pasquier, M. Collard, Lucero Lopez-Perez
{"title":"Co-expressed gene group analysis (CGGA): An automatic tool for the interpretation of microarray experiments","authors":"Ricardo Martínez, Nicolas Pasquier, C. Pasquier, M. Collard, Lucero Lopez-Perez","doi":"10.2390/biecoll-jib-2006-37","DOIUrl":null,"url":null,"abstract":"Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of this large amount of data using different sources of information. We have developed a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co-expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology. By applying CGGA to wellknown microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments.1","PeriodicalId":256361,"journal":{"name":"J. Integr. Bioinform.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Integr. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2390/biecoll-jib-2006-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of this large amount of data using different sources of information. We have developed a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co-expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology. By applying CGGA to wellknown microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments.1
共表达基因组分析(CGGA):用于微阵列实验解释的自动工具
微阵列技术通过同时测量数百种生物条件下数千种基因的表达水平来产生大量数据。如今,生物信息学的主要挑战之一是使用不同的信息源来解释这些大量的数据。我们开发了一种新的数据分析方法,称为CGGA(共表达基因组分析),它自动发现功能丰富的基因组,即具有相同的功能注释,并且是共表达的。CGGA将微阵列的基因表达谱信息与基因本体等全基因组信息源获得的基因功能注释自动整合。通过将CGGA应用于众所周知的微阵列实验,我们已经确定了主要的功能富集和共表达的基因群,并且我们已经证明这种方法增强并加速了DNA微阵列实验的解释
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信