A Disentangled Variational Autoencoder for Prediction of Above Ground Biomass from Hyperspectral Data

Parth Naik, M. Dalponte, L. Bruzzone
{"title":"A Disentangled Variational Autoencoder for Prediction of Above Ground Biomass from Hyperspectral Data","authors":"Parth Naik, M. Dalponte, L. Bruzzone","doi":"10.1109/IGARSS47720.2021.9554415","DOIUrl":null,"url":null,"abstract":"The prediction of forest biophysical parameters is an important task in remote sensing for understanding global carbon cycle. Spectral remote sensing data are available globally at a relatively economical cost making them a viable resource for forest remote sensing. However, the main drawbacks associated with such data is the uncertainty of predictions and cluttered process of selecting band combinations from hyperspectral/multispectral data to produce spectral features for modelling. In this paper, we present an approach that exploits the latest developments in generative variational autoencoders (VAE) that produce disentangled representation from input data to assess the capability of hyperspectral data to model forest aboveground biomass (AGB). The proposed VAE generates a special kind of deep spectral features that are proportional to AGB. A modelling accuracy of R2 = 0.57 (cross-validated) was obtained by the proposed approach, thus pointing out the potential of hyperspectral data to model AGB using disentangled deep spectral features. The proposed approach also enables in bypassing the unreliable process of selecting band combinations to produce spectral features and shows good prospects for mapping global level biomass.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The prediction of forest biophysical parameters is an important task in remote sensing for understanding global carbon cycle. Spectral remote sensing data are available globally at a relatively economical cost making them a viable resource for forest remote sensing. However, the main drawbacks associated with such data is the uncertainty of predictions and cluttered process of selecting band combinations from hyperspectral/multispectral data to produce spectral features for modelling. In this paper, we present an approach that exploits the latest developments in generative variational autoencoders (VAE) that produce disentangled representation from input data to assess the capability of hyperspectral data to model forest aboveground biomass (AGB). The proposed VAE generates a special kind of deep spectral features that are proportional to AGB. A modelling accuracy of R2 = 0.57 (cross-validated) was obtained by the proposed approach, thus pointing out the potential of hyperspectral data to model AGB using disentangled deep spectral features. The proposed approach also enables in bypassing the unreliable process of selecting band combinations to produce spectral features and shows good prospects for mapping global level biomass.
利用高光谱数据预测地面生物量的解纠缠变分自编码器
森林生物物理参数的预测是遥感研究全球碳循环的重要内容。光谱遥感数据在全球范围内以相对经济的成本提供,使其成为森林遥感的可行资源。然而,与这些数据相关的主要缺点是预测的不确定性和从高光谱/多光谱数据中选择波段组合以产生用于建模的光谱特征的混乱过程。在本文中,我们提出了一种利用生成变分自编码器(VAE)的最新发展的方法,该方法可以从输入数据中产生解纠缠表示,以评估高光谱数据模拟森林地上生物量(AGB)的能力。所提出的VAE生成了一种特殊的与AGB成比例的深光谱特征。通过该方法获得了R2 = 0.57(交叉验证)的建模精度,从而指出了高光谱数据利用解纠缠深光谱特征建模AGB的潜力。所提出的方法还可以绕过不可靠的选择波段组合的过程来产生光谱特征,并且在绘制全球水平的生物量方面显示出良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信