Left Demazure–Lusztig Operators on Equivariant (Quantum) Cohomology and K-Theory

L. Mihalcea, H. Naruse, C. Su
{"title":"Left Demazure–Lusztig Operators on Equivariant (Quantum) Cohomology and K-Theory","authors":"L. Mihalcea, H. Naruse, C. Su","doi":"10.1093/IMRN/RNAB049","DOIUrl":null,"url":null,"abstract":"We study the Demazure-Lusztig operators induced by the left multiplication on partial flag manifolds $G/P$. We prove that they generate the Chern-Schwartz-MacPherson classes of Schubert cells (in equivariant cohomology), respectively their motivic Chern classes (in equivariant K theory), in any partial flag manifold. Along the way we advertise many properties of the left and right divided difference operators in cohomology and K theory, and their actions on Schubert classes. We apply this to construct left divided difference operators in equivariant quantum cohomology, and equivariant quantum K theory, generating Schubert classes, and satisfying a Leibniz rule compatible with the quantum product.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We study the Demazure-Lusztig operators induced by the left multiplication on partial flag manifolds $G/P$. We prove that they generate the Chern-Schwartz-MacPherson classes of Schubert cells (in equivariant cohomology), respectively their motivic Chern classes (in equivariant K theory), in any partial flag manifold. Along the way we advertise many properties of the left and right divided difference operators in cohomology and K theory, and their actions on Schubert classes. We apply this to construct left divided difference operators in equivariant quantum cohomology, and equivariant quantum K theory, generating Schubert classes, and satisfying a Leibniz rule compatible with the quantum product.
等变(量子)上同调和k理论上的左demazur - lusztig算子
研究了部分标志流形$G/P$上由左乘法导出的Demazure-Lusztig算子。我们证明了它们在任何部分标志流形中分别生成了Schubert单元的chen - schwartz - macpherson类(在等变上同调中)和它们的动机chen类(在等变K理论中)。在此过程中,我们宣传了上同调和K理论中左右除差算子的许多性质,以及它们在Schubert类上的作用。我们将此应用于构造等变量子上同调和等变量子K理论中的左除差分算子,生成了舒伯特类,并满足了一个与量子积相容的莱布尼兹规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信