Generating Response-Specific Elaborated Feedback Using Long-Form Neural Question Answering

A. Olney
{"title":"Generating Response-Specific Elaborated Feedback Using Long-Form Neural Question Answering","authors":"A. Olney","doi":"10.1145/3430895.3460131","DOIUrl":null,"url":null,"abstract":"In contrast to simple feedback, which provides students with the correct answer, elaborated feedback provides an explanation of the correct answer with respect to the student's error. Elaborated feedback is thus a challenge for AI in education systems because it requires dynamic explanations, which traditionally require logical reasoning and knowledge engineering to generate. This study presents an alternative approach that formulates elaborated feedback in terms of long-form question answering (LFQA). An off-the-shelf LFQA system was evaluated by human raters in a 2x2x2x2 ablation design that manipulated the context documents given to the LFQA model and the post-processing of model output. Results indicate that context manipulations improve performance but that post-processing can have detrimental results.","PeriodicalId":125581,"journal":{"name":"Proceedings of the Eighth ACM Conference on Learning @ Scale","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430895.3460131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In contrast to simple feedback, which provides students with the correct answer, elaborated feedback provides an explanation of the correct answer with respect to the student's error. Elaborated feedback is thus a challenge for AI in education systems because it requires dynamic explanations, which traditionally require logical reasoning and knowledge engineering to generate. This study presents an alternative approach that formulates elaborated feedback in terms of long-form question answering (LFQA). An off-the-shelf LFQA system was evaluated by human raters in a 2x2x2x2 ablation design that manipulated the context documents given to the LFQA model and the post-processing of model output. Results indicate that context manipulations improve performance but that post-processing can have detrimental results.
使用长形式神经问题回答生成特定响应的详细反馈
简单反馈给学生提供正确答案,而详尽反馈则针对学生的错误给出正确答案的解释。因此,详细的反馈对教育系统中的人工智能来说是一个挑战,因为它需要动态解释,而传统上需要逻辑推理和知识工程来生成。本研究提出了另一种方法,即在长形式问答(LFQA)方面制定详细的反馈。一个现成的LFQA系统由人类评分员在2x2x2x2消融设计中进行评估,该设计操纵给予LFQA模型的上下文文档和模型输出的后处理。结果表明,上下文操作可以提高性能,但后处理可能会产生有害的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信