On the k-coverage of line segments by a non homogeneous Poisson-Boolean model

S. T. Aditya, P. Manohar, D. Manjunath
{"title":"On the k-coverage of line segments by a non homogeneous Poisson-Boolean model","authors":"S. T. Aditya, P. Manohar, D. Manjunath","doi":"10.1109/WIOPT.2009.5291571","DOIUrl":null,"url":null,"abstract":"We consider k-coverage of a line by a twodimensional, non homogeneous Poisson-Boolean model. This has applications in sensor networks. We extend the analysis of [1] to the case for k ≫ 1. The extension requires us to define a vector Markov process that tracks the k segments that have the longest residual coverage at a point. This process is used to determine the probability of a segment of the line being completely covered by k or more sensors. We illustrate the extension by considering the case of k = 2.","PeriodicalId":143632,"journal":{"name":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","volume":"545 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2009.5291571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider k-coverage of a line by a twodimensional, non homogeneous Poisson-Boolean model. This has applications in sensor networks. We extend the analysis of [1] to the case for k ≫ 1. The extension requires us to define a vector Markov process that tracks the k segments that have the longest residual coverage at a point. This process is used to determine the probability of a segment of the line being completely covered by k or more sensors. We illustrate the extension by considering the case of k = 2.
非齐次泊松-布尔模型下线段的k覆盖
我们用二维非齐次泊松布尔模型考虑直线的k覆盖。这在传感器网络中有应用。我们将[1]的分析推广到k≠1的情况。扩展要求我们定义一个向量马尔可夫过程,它跟踪在某一点上具有最长残差覆盖的k个线段。这个过程用于确定一段线被k个或更多的传感器完全覆盖的概率。我们通过考虑k = 2的情况来说明推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信