Fast sparse kernel summation on cartesian grids: an on-chip algorithm for 3D implicit surface visualization

Shengxin Zhu, A. Wathen
{"title":"Fast sparse kernel summation on cartesian grids: an on-chip algorithm for 3D implicit surface visualization","authors":"Shengxin Zhu, A. Wathen","doi":"10.1145/3318265.3318278","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast algorithm for evaluating summations of heterogenous sparse kernels of the form [EQUATION] points on an arbitrary fine Cartesian grid in Rd. The algorithm takes the advantage of sparsity and the structure of Cartesian grids. The sparsity admits operations only be done in some active subsets of the Cartesian grids; the structure of Cartesian grids reduce the storage for N points from O(dN) to O(1), a constant, and thus transforms costly memory intensive operations to cheap computationally intensive operations. This results in scalable algorithm with a complexity of O(N) and makes the postprocessing of large 3D implicit surface feasible on a PC or laptop. Numerical examples for 3D surface reconstruction are presented to illustrate the efficiency of the algorithm.","PeriodicalId":241692,"journal":{"name":"Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318265.3318278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a fast algorithm for evaluating summations of heterogenous sparse kernels of the form [EQUATION] points on an arbitrary fine Cartesian grid in Rd. The algorithm takes the advantage of sparsity and the structure of Cartesian grids. The sparsity admits operations only be done in some active subsets of the Cartesian grids; the structure of Cartesian grids reduce the storage for N points from O(dN) to O(1), a constant, and thus transforms costly memory intensive operations to cheap computationally intensive operations. This results in scalable algorithm with a complexity of O(N) and makes the postprocessing of large 3D implicit surface feasible on a PC or laptop. Numerical examples for 3D surface reconstruction are presented to illustrate the efficiency of the algorithm.
直角网格上的快速稀疏核求和:一种三维隐式曲面可视化的片上算法
本文利用笛卡尔网格的稀疏性和网格结构的优点,提出了一种快速求任意精细笛卡尔网格上[EQUATION]形式的异质稀疏核求和的算法。稀疏性只允许在笛卡尔网格的某些活动子集上进行操作;笛卡尔网格结构将N个点的存储空间从0 (dN)减少到0(1),从而将昂贵的内存密集型操作转化为廉价的计算密集型操作。这使得算法复杂度为0 (N)的可扩展算法在PC或笔记本电脑上实现了大型三维隐式曲面的后处理。最后给出了三维曲面重建的数值算例,说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信