{"title":"Community Detection in Multidimensional Networks","authors":"Alessia Amelio, C. Pizzuti","doi":"10.1109/ICTAI.2014.60","DOIUrl":null,"url":null,"abstract":"The paper proposes a new approach to detect shared community structure in multidimensional networks based on the combination of multiobjective genetic algorithms, local search, and the concept of temporal smoothness, coming from evolutionary clustering. A multidimensional network is clustered by running on each slice a multiobjective genetic algorithm that maximizes the modularity on such a slice and, at the same time, minimizes the difference between the community structure obtained for the current layer and that found on the already considered dimensions. Experiments on synthetic and real-world datasets show the ability of the approach in discovering latent shared clustering of objects.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
The paper proposes a new approach to detect shared community structure in multidimensional networks based on the combination of multiobjective genetic algorithms, local search, and the concept of temporal smoothness, coming from evolutionary clustering. A multidimensional network is clustered by running on each slice a multiobjective genetic algorithm that maximizes the modularity on such a slice and, at the same time, minimizes the difference between the community structure obtained for the current layer and that found on the already considered dimensions. Experiments on synthetic and real-world datasets show the ability of the approach in discovering latent shared clustering of objects.