Modern Subsampling Methods for Large-Scale Least Squares Regression

Tao Li, Cheng Meng
{"title":"Modern Subsampling Methods for Large-Scale Least Squares Regression","authors":"Tao Li, Cheng Meng","doi":"10.4018/IJCPS.2020070101","DOIUrl":null,"url":null,"abstract":"Subsampling methods aim to select a subsample as a surrogate for the observed sample. As a powerful technique for large-scale data analysis, various subsampling methods are developed for more effective coefficient estimation and model prediction. This review presents some cutting-edge subsampling methods based on the large-scale least squares estimation. Two major families of subsampling methods are introduced: the randomized subsampling approach and the optimal subsampling approach. The former aims to develop a more effective data-dependent sampling probability while the latter aims to select a deterministic subsample in accordance with certain optimality criteria. Real data examples are provided to compare these methods empirically, respecting both the estimation accuracy and the computing time.","PeriodicalId":198135,"journal":{"name":"Int. J. Cyber Phys. Syst.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCPS.2020070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Subsampling methods aim to select a subsample as a surrogate for the observed sample. As a powerful technique for large-scale data analysis, various subsampling methods are developed for more effective coefficient estimation and model prediction. This review presents some cutting-edge subsampling methods based on the large-scale least squares estimation. Two major families of subsampling methods are introduced: the randomized subsampling approach and the optimal subsampling approach. The former aims to develop a more effective data-dependent sampling probability while the latter aims to select a deterministic subsample in accordance with certain optimality criteria. Real data examples are provided to compare these methods empirically, respecting both the estimation accuracy and the computing time.
大规模最小二乘回归的现代子抽样方法
子抽样方法的目的是选择一个子样本作为观察样本的替代。作为一种强大的大规模数据分析技术,各种子抽样方法被开发出来,以更有效地估计系数和预测模型。本文综述了基于大规模最小二乘估计的几种最新子抽样方法。介绍了两大类子抽样方法:随机子抽样方法和最优子抽样方法。前者的目的是建立一个更有效的数据依赖的抽样概率,后者的目的是根据一定的最优性准则选择一个确定性的子样本。给出了实际数据实例,从估计精度和计算时间两方面对这些方法进行了经验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信