Fully convolutional neural networks for remote sensing image classification

Emmanuel Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez
{"title":"Fully convolutional neural networks for remote sensing image classification","authors":"Emmanuel Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez","doi":"10.1109/igarss.2016.7730322","DOIUrl":null,"url":null,"abstract":"We propose a convolutional neural network (CNN) model for remote sensing image classification. Using CNNs provides us with a means of learning contextual features for large-scale image labeling. Our network consists of four stacked convolutional layers that downsample the image and extract relevant features. On top of these, a deconvolutional layer upsamples the data back to the initial resolution, producing a final dense image labeling. Contrary to previous frameworks, our network contains only convolution and deconvolution operations. Experiments on aerial images show that our network produces more accurate classifications in lower computational time.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/igarss.2016.7730322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

Abstract

We propose a convolutional neural network (CNN) model for remote sensing image classification. Using CNNs provides us with a means of learning contextual features for large-scale image labeling. Our network consists of four stacked convolutional layers that downsample the image and extract relevant features. On top of these, a deconvolutional layer upsamples the data back to the initial resolution, producing a final dense image labeling. Contrary to previous frameworks, our network contains only convolution and deconvolution operations. Experiments on aerial images show that our network produces more accurate classifications in lower computational time.
用于遥感图像分类的全卷积神经网络
提出了一种基于卷积神经网络(CNN)的遥感图像分类模型。使用cnn为我们提供了一种学习大规模图像标注的上下文特征的方法。我们的网络由四个堆叠的卷积层组成,这些层对图像进行下采样并提取相关特征。在此基础上,反卷积层将数据上采样回初始分辨率,产生最终的密集图像标记。与之前的框架相反,我们的网络只包含卷积和反卷积操作。在航空图像上的实验表明,我们的网络在更短的计算时间内产生了更准确的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信