Decimation-in-frequency split-radix algorithm for computing new Mersenne number transform

M. T. Hamood, S. Boussakta
{"title":"Decimation-in-frequency split-radix algorithm for computing new Mersenne number transform","authors":"M. T. Hamood, S. Boussakta","doi":"10.1109/ISSPIT.2010.5711798","DOIUrl":null,"url":null,"abstract":"The new Mersenne number transform (NMNT) has proved to be an important number theoretic transform (NTT) for error-free calculation of convolutions and correlations. Its main feature is that for a suitable Mersenne prime number (p), the allowed power-of-two transform lengths can be very large. In this paper, a new decimation-in-frequency split-radix algorithm for efficient computation of the 1-D NMNT is developed by deriving a general radix-based algorithm in finite fields modulo Mersenne numbers and applying the principles of the split-radix algorithm to the NMNT. The proposed algorithm possesses the in-place computation property, leading to substantial reductions in the number of multiplications and additions. The validity of the proposed algorithm is verified through examples involving numerical calculations of the forward and inverse transforms and digital filtering applications, using both the 1-D NMNT and the developed algorithm.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The new Mersenne number transform (NMNT) has proved to be an important number theoretic transform (NTT) for error-free calculation of convolutions and correlations. Its main feature is that for a suitable Mersenne prime number (p), the allowed power-of-two transform lengths can be very large. In this paper, a new decimation-in-frequency split-radix algorithm for efficient computation of the 1-D NMNT is developed by deriving a general radix-based algorithm in finite fields modulo Mersenne numbers and applying the principles of the split-radix algorithm to the NMNT. The proposed algorithm possesses the in-place computation property, leading to substantial reductions in the number of multiplications and additions. The validity of the proposed algorithm is verified through examples involving numerical calculations of the forward and inverse transforms and digital filtering applications, using both the 1-D NMNT and the developed algorithm.
计算新梅森数变换的十进制频分基数算法
新的梅森数变换(NMNT)已被证明是一种重要的无误差计算卷积和相关的数论变换(NTT)。它的主要特点是,对于一个合适的梅森素数(p),允许的2次幂变换长度可以非常大。本文在模梅森数的基础上,推导出一种基于基数的有限域通用算法,并将该算法的原理应用到一维NMNT中,提出了一种有效计算一维NMNT的分频分基算法。该算法具有就地计算的特性,大大减少了乘法和加法的数量。通过使用一维NMNT和所开发的算法进行正反变换和数字滤波应用的数值计算,验证了所提出算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信