{"title":"High-Quality Capture of Documents on a Cluttered Tabletop with a 4K Video Camera","authors":"Chelhwon Kim, Patrick Chiu, Henry Tang","doi":"10.1145/2682571.2797074","DOIUrl":null,"url":null,"abstract":"We present a novel system for detecting and capturing paper documents on a tabletop using a 4K video camera mounted overhead on pan-tilt servos. Our automated system first finds paper documents on a cluttered tabletop based on a text probability map, and then takes a sequence of high-resolution frames of the located document to reconstruct a high quality and fronto-parallel document page image. The quality of the resulting images enables OCR processing on the whole page. We performed a preliminary evaluation on a small set of 10 document pages and our proposed system achieved 98% accuracy with the open source Tesseract OCR engine.","PeriodicalId":106339,"journal":{"name":"Proceedings of the 2015 ACM Symposium on Document Engineering","volume":"1646 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2682571.2797074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We present a novel system for detecting and capturing paper documents on a tabletop using a 4K video camera mounted overhead on pan-tilt servos. Our automated system first finds paper documents on a cluttered tabletop based on a text probability map, and then takes a sequence of high-resolution frames of the located document to reconstruct a high quality and fronto-parallel document page image. The quality of the resulting images enables OCR processing on the whole page. We performed a preliminary evaluation on a small set of 10 document pages and our proposed system achieved 98% accuracy with the open source Tesseract OCR engine.