A real-time multi-class multi-object tracker using YOLOv2

KangUn Jo, Jung-Hui Im, Jingu Kim, Dae-Shik Kim
{"title":"A real-time multi-class multi-object tracker using YOLOv2","authors":"KangUn Jo, Jung-Hui Im, Jingu Kim, Dae-Shik Kim","doi":"10.1109/ICSIPA.2017.8120665","DOIUrl":null,"url":null,"abstract":"Multi-class multi-object tracking is an important problem for real-world applications like surveillance system, gesture recognition, and robot vision system. However, building a multi-class multi-object tracker that works in real-time is difficult due to low processing speed for detection, classification, and data association tasks. By using fast and reliable deep learning based algorithm YOLOv2 together with fast detection to tracker algorithm, we build a real-time multi-class multi-object tracking system with competitive accuracy.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Multi-class multi-object tracking is an important problem for real-world applications like surveillance system, gesture recognition, and robot vision system. However, building a multi-class multi-object tracker that works in real-time is difficult due to low processing speed for detection, classification, and data association tasks. By using fast and reliable deep learning based algorithm YOLOv2 together with fast detection to tracker algorithm, we build a real-time multi-class multi-object tracking system with competitive accuracy.
使用YOLOv2的实时多类多目标跟踪器
多类多目标跟踪是监控系统、手势识别和机器人视觉系统等实际应用中的一个重要问题。然而,由于检测、分类和数据关联任务的处理速度较慢,构建实时工作的多类多目标跟踪器是很困难的。采用快速可靠的基于深度学习的YOLOv2算法,结合快速检测到跟踪算法,构建了具有一定精度的实时多类多目标跟踪系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信