Parylene-based fold-and-bond wireless pressure sensor

Brian P. Crum, Wen Li
{"title":"Parylene-based fold-and-bond wireless pressure sensor","authors":"Brian P. Crum, Wen Li","doi":"10.1109/NEMS.2013.6559926","DOIUrl":null,"url":null,"abstract":"This paper describes the design, fabrication, and characterization of a wireless, flexible, passive pressure sensor that is suitable for long-term intraocular pressure monitoring. The integrated planar MEMS coil and the variable capacitor were constructed using a fold-and-bond technique, which avoids multilayer processes and thus reduces fabrication complications. Parylene-C was the structural and packaging material, which ensures the flexibility and biocompatibility of the sensor. Devices were characterized in both air and liquid environments. A pressure sensitivity of 156 kHz/mmHg and a maximum detectable range of 28 mm were achieved in water.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper describes the design, fabrication, and characterization of a wireless, flexible, passive pressure sensor that is suitable for long-term intraocular pressure monitoring. The integrated planar MEMS coil and the variable capacitor were constructed using a fold-and-bond technique, which avoids multilayer processes and thus reduces fabrication complications. Parylene-C was the structural and packaging material, which ensures the flexibility and biocompatibility of the sensor. Devices were characterized in both air and liquid environments. A pressure sensitivity of 156 kHz/mmHg and a maximum detectable range of 28 mm were achieved in water.
基于聚苯乙烯的折叠键合无线压力传感器
本文描述了一种适用于长期眼压监测的无线、柔性、被动压力传感器的设计、制造和特性。采用折叠键合技术构建了集成平面MEMS线圈和可变电容器,避免了多层工艺,从而降低了制造复杂性。聚苯乙烯- c作为结构和包装材料,保证了传感器的柔韧性和生物相容性。设备在空气和液体环境中进行了表征。在水中的压力灵敏度为156 kHz/mmHg,最大探测范围为28 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信