Prediction of Heart Diseases using Deep Learning: A Review

C. T. Ashita, T. S. Kala
{"title":"Prediction of Heart Diseases using Deep Learning: A Review","authors":"C. T. Ashita, T. S. Kala","doi":"10.1109/ICCMC53470.2022.9753747","DOIUrl":null,"url":null,"abstract":"The WHO studies show that cardiovascular diseases (CVD) are the major cause of 31% of all global deaths. CVD is also responsible for 45 percent of deaths in people aged 40 to 69. An accurate prediction system of heart disease is necessary and important to reduce deaths, globally. Today with the advancement of technology, prediction of heart disease using deep learning models, applying vast data can give an accurate prediction model. Using a deep learning method 94% of accuracy can be obtained and the data sets with different attributes can be used for analysis. The objective is to apply various algorithms to the problem and make a comparative study on the effectiveness of these algorithms in predicting the presence of coronary illness in a person.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9753747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The WHO studies show that cardiovascular diseases (CVD) are the major cause of 31% of all global deaths. CVD is also responsible for 45 percent of deaths in people aged 40 to 69. An accurate prediction system of heart disease is necessary and important to reduce deaths, globally. Today with the advancement of technology, prediction of heart disease using deep learning models, applying vast data can give an accurate prediction model. Using a deep learning method 94% of accuracy can be obtained and the data sets with different attributes can be used for analysis. The objective is to apply various algorithms to the problem and make a comparative study on the effectiveness of these algorithms in predicting the presence of coronary illness in a person.
利用深度学习预测心脏病:综述
世卫组织的研究表明,心血管疾病是造成全球31%死亡的主要原因。在40岁至69岁的人群中,心血管疾病也占死亡人数的45%。一个准确的心脏病预测系统对于在全球范围内减少死亡是必要和重要的。在技术进步的今天,心脏病的预测使用深度学习模型,应用大量的数据可以给出准确的预测模型。使用深度学习方法可以获得94%的准确率,并且可以使用具有不同属性的数据集进行分析。目的是将各种算法应用于该问题,并对这些算法在预测人是否患有冠状动脉疾病方面的有效性进行比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信