On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

A. Antoniadis, Sándor Kisfaludi-Bak, Bundit Laekhanukit, Daniel Vaz
{"title":"On the Approximability of the Traveling Salesman Problem with Line Neighborhoods","authors":"A. Antoniadis, Sándor Kisfaludi-Bak, Bundit Laekhanukit, Daniel Vaz","doi":"10.4230/LIPIcs.SWAT.2022.10","DOIUrl":null,"url":null,"abstract":"We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in $\\mathbb{R}^d$, with $d\\ge 3$, are $\\mathrm{NP}$-hardness and an $O(\\log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. \nWe show that TSP with lines in $\\mathbb{R}^d$ is APX-hard for any $d\\ge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1\\le k \\leq d-2$ unless $\\mathrm{P}=\\mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(\\log n)$ by showing that TSP with lines does not admit a $(2-\\epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(\\log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(\\log\\log n)}$.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"49 407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in $\mathbb{R}^d$, with $d\ge 3$, are $\mathrm{NP}$-hardness and an $O(\log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $\mathbb{R}^d$ is APX-hard for any $d\ge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1\le k \leq d-2$ unless $\mathrm{P}=\mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(\log n)$ by showing that TSP with lines does not admit a $(2-\epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(\log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(\log\log n)}$.
带线邻域的旅行商问题的逼近性
我们研究了欧几里得旅行商问题的变体,其中我们给出了一组线作为输入,而不是一组点,目标是找到访问每条线的最短路径。在$\mathbb{R}^d$和$d\ge 3$中,最著名的上界和下界是$\mathrm{NP}$ -硬度和$O(\log^3 n)$ -近似算法,这是基于对群斯坦纳树问题的简化。我们展示了在$\mathbb{R}^d$中包含行的TSP对于任何$d\ge 3$都是APX-hard的。更一般地说,这意味着具有$k$维平面的TSP不承认任何$1\le k \leq d-2$的PTAS,除非$\mathrm{P}=\mathrm{NP}$,它给出了这些问题的近似性的完整分类,因为有已知的$k=0$(即点)和$k=d-1$(超平面)的PTAS。通过证明在唯一博弈猜想下,带线的TSP不承认$d$维度上的$(2-\epsilon)$ -近似,我们能够给出$d=O(\log n)$更强的不可近似因子。从积极的方面来看,我们利用最近关于组Steiner树问题的限制变体的结果,以便给出该问题的$O(\log^2 n)$ -近似算法,尽管运行时间为$n^{O(\log\log n)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信