{"title":"UAV Deployment for Throughput Maximization in a UAV-Assisted Cellular Communications","authors":"Nishant Gupta, S. Agarwal, Deepak Mishra","doi":"10.1109/PIMRC50174.2021.9569533","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicle (UAV) deployment as an aerial base station in fifth-generation (5G) communication system has emerged as a promising technology to provide seamless communication in a geographical region. The UAV’s high mobility potential offers additional degrees of freedom for effective deployment. Therefore, the three-dimensional (3D) deployment of UAV is one of the key challenges in UAV-assisted communication systems. In this paper, we address the problem of UAV deployment in 3D space to provide on-demand coverage to the ground users to maximize the sum rate. We consider realistic UAV-ground channel model derived from extensive experiments. The problem formulated is non-convex. To obtain the optimal location, we approximate the rate expression to identify the concave regions and propose a low-complexity solution by applying alternating optimization. Through simulation results, we provide valuable insights into the low-complexity solution.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Unmanned Aerial Vehicle (UAV) deployment as an aerial base station in fifth-generation (5G) communication system has emerged as a promising technology to provide seamless communication in a geographical region. The UAV’s high mobility potential offers additional degrees of freedom for effective deployment. Therefore, the three-dimensional (3D) deployment of UAV is one of the key challenges in UAV-assisted communication systems. In this paper, we address the problem of UAV deployment in 3D space to provide on-demand coverage to the ground users to maximize the sum rate. We consider realistic UAV-ground channel model derived from extensive experiments. The problem formulated is non-convex. To obtain the optimal location, we approximate the rate expression to identify the concave regions and propose a low-complexity solution by applying alternating optimization. Through simulation results, we provide valuable insights into the low-complexity solution.