Clustering and confidence intervals for radar target identification and estimation

R. Volz, S. Close, P. Erickson
{"title":"Clustering and confidence intervals for radar target identification and estimation","authors":"R. Volz, S. Close, P. Erickson","doi":"10.1109/USNC-URSI-NRSM.2013.6525103","DOIUrl":null,"url":null,"abstract":"Pulsed radar data often presents the task of identifying targets and estimating their properties through use of a metric (data-derived, modeled, or hybrid) unique to the targets under study. Accuracy and reliability of this procedure is extremely important, especially since subsequent processing and scientific results can be inaccurate or misleading if target identification and estimation is flawed. For this reason, we present reliable methods for performing these processing steps and quantify their accuracy using real and simulated data.","PeriodicalId":123571,"journal":{"name":"2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI-NRSM.2013.6525103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsed radar data often presents the task of identifying targets and estimating their properties through use of a metric (data-derived, modeled, or hybrid) unique to the targets under study. Accuracy and reliability of this procedure is extremely important, especially since subsequent processing and scientific results can be inaccurate or misleading if target identification and estimation is flawed. For this reason, we present reliable methods for performing these processing steps and quantify their accuracy using real and simulated data.
雷达目标识别与估计的聚类与置信区间
脉冲雷达数据通常提出了通过使用所研究目标特有的度量(数据派生的、建模的或混合的)来识别目标并估计其特性的任务。该程序的准确性和可靠性极其重要,特别是因为如果目标识别和估计有缺陷,后续处理和科学结果可能不准确或具有误导性。出于这个原因,我们提出了执行这些处理步骤的可靠方法,并使用真实和模拟数据量化其准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信