{"title":"Coreference Resolution in Vietnamese Electronic Medical Records","authors":"Hung Nguyen, T. Cao","doi":"10.25073/2588-1086/VNUCSCE.210","DOIUrl":null,"url":null,"abstract":"Electronic medical records (EMR) have emerged as an important source of data for research in medicine andinformation technology, as they contain much of valuable human medical knowledge in healthcare and patienttreatment. This paper tackles the problem of coreference resolution in Vietnamese EMRs. Unlike in English ones,in Vietnamese clinical texts, verbs are often used to describe disease symptoms. So we first define rules to annotateverbs as mentions and consider coreference between verbs and other noun or adjective mentions possible. Thenwe propose a support vector machine classifier on bag-of-words vector representation of mentions that takes intoaccount the special characteristics of Vietnamese language to resolve their coreference. The achieved F1 scoreon our dataset of real Vietnamese EMRs provided by a hospital in Ho Chi Minh city is 91.4%. To the best of ourknowledge, this is the first research work in coreference resolution on Vietnamese clinical texts.Keywords: Clinical text, support vector machine, bag-of-words vector, lexical similarity, unrestricted coreference","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/VNUCSCE.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic medical records (EMR) have emerged as an important source of data for research in medicine andinformation technology, as they contain much of valuable human medical knowledge in healthcare and patienttreatment. This paper tackles the problem of coreference resolution in Vietnamese EMRs. Unlike in English ones,in Vietnamese clinical texts, verbs are often used to describe disease symptoms. So we first define rules to annotateverbs as mentions and consider coreference between verbs and other noun or adjective mentions possible. Thenwe propose a support vector machine classifier on bag-of-words vector representation of mentions that takes intoaccount the special characteristics of Vietnamese language to resolve their coreference. The achieved F1 scoreon our dataset of real Vietnamese EMRs provided by a hospital in Ho Chi Minh city is 91.4%. To the best of ourknowledge, this is the first research work in coreference resolution on Vietnamese clinical texts.Keywords: Clinical text, support vector machine, bag-of-words vector, lexical similarity, unrestricted coreference