Addressing challenges of constructionist modeling of adaptive systems

Uwe Lorenz, R. Romeike
{"title":"Addressing challenges of constructionist modeling of adaptive systems","authors":"Uwe Lorenz, R. Romeike","doi":"10.1145/3556787.3556870","DOIUrl":null,"url":null,"abstract":"How should computer-based educational tools represent Machine Learning (ML) systems for didactic purposes? We address this question using constructionist learning theory and the intelligent agent paradigm of AI. ML in this context is understood as generating and improving ”goal-directed” system behaviors by iteratively maximizing a ”goal function”. We give a theoretical outline of the problem domain along the questions: How independent can ML concepts be from concepts of classical computer science (CS)? What are central concepts and processes that ML possesses? What are important properties of structural models of this kind of systems conducive to comprehension? Finally, we propose some design features of educational informatics tools for teaching ML and outline further research needs.","PeriodicalId":136039,"journal":{"name":"Proceedings of the 17th Workshop in Primary and Secondary Computing Education","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th Workshop in Primary and Secondary Computing Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556787.3556870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How should computer-based educational tools represent Machine Learning (ML) systems for didactic purposes? We address this question using constructionist learning theory and the intelligent agent paradigm of AI. ML in this context is understood as generating and improving ”goal-directed” system behaviors by iteratively maximizing a ”goal function”. We give a theoretical outline of the problem domain along the questions: How independent can ML concepts be from concepts of classical computer science (CS)? What are central concepts and processes that ML possesses? What are important properties of structural models of this kind of systems conducive to comprehension? Finally, we propose some design features of educational informatics tools for teaching ML and outline further research needs.
解决自适应系统的建构主义建模的挑战
基于计算机的教育工具应该如何代表用于教学目的的机器学习(ML)系统?我们使用建构主义学习理论和人工智能的智能代理范式来解决这个问题。在这种情况下,机器学习被理解为通过迭代最大化“目标函数”来生成和改进“目标导向”的系统行为。我们沿着以下问题给出了问题域的理论概述:机器学习概念如何独立于经典计算机科学(CS)的概念?ML拥有的核心概念和过程是什么?这类系统的结构模型有哪些有利于理解的重要属性?最后,我们提出了一些用于机器学习教学的教育信息学工具的设计特点,并概述了进一步的研究需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信