A New Approach for Classification of EEG Signals

G. Tezel, Y. Ozbay
{"title":"A New Approach for Classification of EEG Signals","authors":"G. Tezel, Y. Ozbay","doi":"10.1109/SIU.2007.4298603","DOIUrl":null,"url":null,"abstract":"This study presents a comparative study of the classification accuracy and speed of performance of epileptic Electroensefalogram (EEG) signals using a traditional neural network architecture based on backpropagation training algorithm, and a new neural network. The proposed network is called adaptive neural network with activation function (AAF-NN) in which adjustable parameters, It is used two different activation functions for developed study. One of theese adaptive activation functions is sigmoid function with free parameters and the other one is sum of sinusoidal function with free parameters and sigmoid function with free parameters. The adaptive activation function with free parameters is used in the hidden layer for the proposed structures based on the feed-forward neural network Experimental results have revealed that neural network with adaptive activation function is more suitable for classification EEG signals and training speed is much faster than traditional neural network with fixed sigmoid activation function.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comparative study of the classification accuracy and speed of performance of epileptic Electroensefalogram (EEG) signals using a traditional neural network architecture based on backpropagation training algorithm, and a new neural network. The proposed network is called adaptive neural network with activation function (AAF-NN) in which adjustable parameters, It is used two different activation functions for developed study. One of theese adaptive activation functions is sigmoid function with free parameters and the other one is sum of sinusoidal function with free parameters and sigmoid function with free parameters. The adaptive activation function with free parameters is used in the hidden layer for the proposed structures based on the feed-forward neural network Experimental results have revealed that neural network with adaptive activation function is more suitable for classification EEG signals and training speed is much faster than traditional neural network with fixed sigmoid activation function.
一种新的脑电信号分类方法
本文对基于反向传播训练算法的传统神经网络结构与基于反向传播训练算法的新型神经网络结构对癫痫脑电图信号的分类精度和分类速度进行了比较研究。该网络被称为参数可调的带激活函数的自适应神经网络(AAF-NN),采用两种不同的激活函数进行研究。其中一种自适应激活函数是带自由参数的sigmoid函数,另一种是带自由参数的正弦函数与带自由参数的sigmoid函数之和。在前馈神经网络的基础上,将自由参数的自适应激活函数用于隐层结构。实验结果表明,自适应激活函数的神经网络更适合于脑电信号的分类,并且训练速度比固定s型激活函数的传统神经网络快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信