Online Learning with Radial Basis Function Networks

Gabriel Borrageiro, Nikan B. Firoozye, P. Barucca
{"title":"Online Learning with Radial Basis Function Networks","authors":"Gabriel Borrageiro, Nikan B. Firoozye, P. Barucca","doi":"10.36227/techrxiv.14851077.v1","DOIUrl":null,"url":null,"abstract":"The authors provide multi-horizon forecasts on the returns of financial time series. Their sequentially optimised radial basis function network (RBFNet) outperforms a random-walk baseline and several powerful supervised learners. Their RBFNets naturally measure the similarity between test samples and prototypes that capture the characteristics of the feature space. The authors show that the training set financial time series returns have low similarity with their test set counterparts, highlighting the challenges faced in particular by kernel-based methods that use the training set returns as test-time prototypes; in contrast, their online learning RBFNets have hidden units that retain greater similarity across time.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.14851077.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors provide multi-horizon forecasts on the returns of financial time series. Their sequentially optimised radial basis function network (RBFNet) outperforms a random-walk baseline and several powerful supervised learners. Their RBFNets naturally measure the similarity between test samples and prototypes that capture the characteristics of the feature space. The authors show that the training set financial time series returns have low similarity with their test set counterparts, highlighting the challenges faced in particular by kernel-based methods that use the training set returns as test-time prototypes; in contrast, their online learning RBFNets have hidden units that retain greater similarity across time.
基于径向基函数网络的在线学习
作者对金融时间序列的收益进行了多尺度预测。他们的顺序优化径向基函数网络(RBFNet)优于随机漫步基线和几个强大的监督学习器。他们的RBFNets自然地度量捕获特征空间特征的测试样本和原型之间的相似性。作者表明,训练集金融时间序列回报与测试集的相似性较低,突出了使用训练集回报作为测试时间原型的基于核的方法所面临的挑战;相比之下,他们的在线学习RBFNets具有隐藏单元,这些单元随着时间的推移保持了更大的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信