CASTA: CUDA-Accelerated Static Timing Analysis for VLSI Designs

Hunta H.-W. Wang, Louis Y.-Z. Lin, Ryan H.-M. Huang, Charles H.-P. Wen
{"title":"CASTA: CUDA-Accelerated Static Timing Analysis for VLSI Designs","authors":"Hunta H.-W. Wang, Louis Y.-Z. Lin, Ryan H.-M. Huang, Charles H.-P. Wen","doi":"10.1109/ICPP.2014.28","DOIUrl":null,"url":null,"abstract":"General-purpose computing on graphics processing unit (GPGPU) enables the possibility of parallel computing for Static Timing Analysis (STA) of VLSI designs. However, memory access and synchronization between massively many cores become challenges to parallelizing STA. In this work, we developed a fast CUDA-Accelerated STA engine (named CASTA) that incorporates four novel techniques including Table-Index Remapping (TIR), Texture-Accelerated Rendering (TAR), Cell Levelization & Type Sorting (CLTS) and Timing-Table Restructuring(TTR) to enable high parallelism. Cell Levelization & Type Sorting (CLTS) levelizes cells and sort their types in order to efficiently access the same timing library. Timing-Table Restructuring (TTR) modifies the data structure for timing signals of cells to increase memory throughput. Table-Index Remapping (TIR) re-maps the axes of timing tables to retrieve data more efficiently while Texture-Accelerated Rendering (TAR) expands look-up tables (LUTs) to avoid extrapolation and stores LUTs in the texture for speed. As a result, our experimental result indicates that CASTA successfully enables high parallelism and outperforms a commercial tool by a three-order speedup on average over several benchmark circuits.","PeriodicalId":441115,"journal":{"name":"2014 43rd International Conference on Parallel Processing","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 43rd International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2014.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

General-purpose computing on graphics processing unit (GPGPU) enables the possibility of parallel computing for Static Timing Analysis (STA) of VLSI designs. However, memory access and synchronization between massively many cores become challenges to parallelizing STA. In this work, we developed a fast CUDA-Accelerated STA engine (named CASTA) that incorporates four novel techniques including Table-Index Remapping (TIR), Texture-Accelerated Rendering (TAR), Cell Levelization & Type Sorting (CLTS) and Timing-Table Restructuring(TTR) to enable high parallelism. Cell Levelization & Type Sorting (CLTS) levelizes cells and sort their types in order to efficiently access the same timing library. Timing-Table Restructuring (TTR) modifies the data structure for timing signals of cells to increase memory throughput. Table-Index Remapping (TIR) re-maps the axes of timing tables to retrieve data more efficiently while Texture-Accelerated Rendering (TAR) expands look-up tables (LUTs) to avoid extrapolation and stores LUTs in the texture for speed. As a result, our experimental result indicates that CASTA successfully enables high parallelism and outperforms a commercial tool by a three-order speedup on average over several benchmark circuits.
超大规模集成电路设计的cuda加速静态时序分析
图形处理单元(GPGPU)上的通用计算使VLSI设计的静态时序分析(STA)的并行计算成为可能。然而,大量多核之间的内存访问和同步成为并行STA的挑战。在这项工作中,我们开发了一个快速cuda加速STA引擎(命名为CASTA),它结合了四种新技术,包括表-索引重新映射(TIR),纹理加速渲染(TAR),单元水平化和类型排序(CLTS)和时序表重构(TTR),以实现高并行性。单元格水平化和类型排序(CLTS)水平化单元格和排序他们的类型,以便有效地访问相同的定时库。时序表重构(TTR)通过修改单元计时信号的数据结构来提高内存吞吐量。表-索引重新映射(TIR)重新映射计时表的轴以更有效地检索数据,而纹理加速渲染(TAR)扩展查找表(lut)以避免外推并将lut存储在纹理中以提高速度。因此,我们的实验结果表明,CASTA成功地实现了高并行性,并且在几个基准电路上的平均加速速度比商业工具提高了三阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信