Bethe approximation to inverse halftoning using multiple halftone images

Y. Saika, T. Aoki
{"title":"Bethe approximation to inverse halftoning using multiple halftone images","authors":"Y. Saika, T. Aoki","doi":"10.1109/ICNC.2011.6022513","DOIUrl":null,"url":null,"abstract":"We formulate the problem of inverse halftoning using multiple dithered images utilizing the Bayesian inference via the maximizer of the posterior marginal (MPM) estimate on the basis of statistical mechanics of the Q-Ising model. From the theoretical point of view, the Monte Carlo simulation for a set of snapshots of the Q-Ising model clarifies that the performance is improved introducing the prior information on original images into the MPM estimate and that the optimal performance is realized around the Bayes-optimal condition within statistical uncertainty. Then, these properties are qualitatively confirmed by the analytical estimate via the infinite-range model. Next, we try the Bethe approximation established in statistical mechanics for this problem. Numerical simulations clarify that the Bethe approximation works as well as the MPM estimate via the Monte Carlo simulation for 256-level standard images, if we set parameters of the model prior appropriately.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate the problem of inverse halftoning using multiple dithered images utilizing the Bayesian inference via the maximizer of the posterior marginal (MPM) estimate on the basis of statistical mechanics of the Q-Ising model. From the theoretical point of view, the Monte Carlo simulation for a set of snapshots of the Q-Ising model clarifies that the performance is improved introducing the prior information on original images into the MPM estimate and that the optimal performance is realized around the Bayes-optimal condition within statistical uncertainty. Then, these properties are qualitatively confirmed by the analytical estimate via the infinite-range model. Next, we try the Bethe approximation established in statistical mechanics for this problem. Numerical simulations clarify that the Bethe approximation works as well as the MPM estimate via the Monte Carlo simulation for 256-level standard images, if we set parameters of the model prior appropriately.
采用多幅半色调图像逼近反半色调
我们在Q-Ising模型的统计力学基础上,利用贝叶斯推理,通过后边缘(MPM)估计的最大化器,制定了使用多个抖动图像的逆半调问题。从理论的角度来看,对Q-Ising模型的一组快照的Monte Carlo模拟表明,将原始图像的先验信息引入到MPM估计中,性能得到了提高,并且在统计不确定性的情况下,在Bayes-optimal条件下实现了最优性能。然后,通过无限范围模型的分析估计定性地证实了这些性质。接下来,我们尝试在统计力学中建立的贝特近似来解决这个问题。数值模拟表明,如果我们事先适当地设置模型参数,Bethe近似与通过蒙特卡罗模拟对256级标准图像的MPM估计一样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信