Combining a novel feeding operator and recent advances to improve the fish school search

L. Verçosa, C. J. A. B. Filho, R. Monteiro
{"title":"Combining a novel feeding operator and recent advances to improve the fish school search","authors":"L. Verçosa, C. J. A. B. Filho, R. Monteiro","doi":"10.1109/LA-CCI.2017.8285675","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new version of Fish School Search Algorithm named FSS-CS. This release has three major changes. First, it has an improved feeding mechanism to enhance the barycenter calculation. Secondly, it promotes exploration by using a state-of-art non-greedy strategy. Finally, it incorporates a promising existent elliptic steps decay. Five benchmark optimization problems were employed to evaluate the performance of our proposal. The results show that the proposed version outperformed in most cases the FSS versions for mono-modal optimization.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a new version of Fish School Search Algorithm named FSS-CS. This release has three major changes. First, it has an improved feeding mechanism to enhance the barycenter calculation. Secondly, it promotes exploration by using a state-of-art non-greedy strategy. Finally, it incorporates a promising existent elliptic steps decay. Five benchmark optimization problems were employed to evaluate the performance of our proposal. The results show that the proposed version outperformed in most cases the FSS versions for mono-modal optimization.
结合一种新的喂食操作和最新进展,以改善鱼群搜索
在这项工作中,我们提出了一个新版本的鱼群搜索算法,名为FSS-CS。这个版本有三个主要的变化。首先,改进了进给机构,提高了重心计算能力。其次,它通过使用最先进的非贪婪策略来促进探索。最后,结合了一种很有前途的存在的椭圆阶跃衰减。采用五个基准优化问题来评估我们的建议的性能。结果表明,在大多数情况下,所提出的版本在单模态优化方面优于FSS版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信