Smart Mobility Improvement: Classifying Commuter Satisfaction in Sydney, Australia

The Danh Phan
{"title":"Smart Mobility Improvement: Classifying Commuter Satisfaction in Sydney, Australia","authors":"The Danh Phan","doi":"10.1145/3310986.3311021","DOIUrl":null,"url":null,"abstract":"This paper attempts to derive useful insights from commuter feedback data. It investigates transportation mode, commuting density and peak hours in Sydney, Australia. Machine Learning techniques are then applied to analyse traveler satisfaction to discover useful models for classification. Experiments demonstrate that each method has its competitive advantages over others, and no approach completely outperform other methods in terms of accuracy, performance, and interpretability. It is suggested that one could use Support Vector Machine to classify satisfied commuters, and/or utilize Neural Network to classify unsatisfied travelers.","PeriodicalId":252781,"journal":{"name":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310986.3311021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper attempts to derive useful insights from commuter feedback data. It investigates transportation mode, commuting density and peak hours in Sydney, Australia. Machine Learning techniques are then applied to analyse traveler satisfaction to discover useful models for classification. Experiments demonstrate that each method has its competitive advantages over others, and no approach completely outperform other methods in terms of accuracy, performance, and interpretability. It is suggested that one could use Support Vector Machine to classify satisfied commuters, and/or utilize Neural Network to classify unsatisfied travelers.
智能交通改进:澳大利亚悉尼通勤满意度分类
本文试图从通勤者反馈数据中获得有用的见解。它调查了澳大利亚悉尼的交通方式、通勤密度和高峰时间。然后应用机器学习技术来分析旅行者满意度,以发现有用的分类模型。实验表明,每种方法都有其竞争优势,没有一种方法在准确性、性能和可解释性方面完全优于其他方法。建议使用支持向量机对满意的通勤者进行分类,或者使用神经网络对不满意的通勤者进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信