A novel fuzzy logic model for multiple gas sensor array

R. Parthasarathy, V. Kalaichelvi, Swaminathan H. Sundaram
{"title":"A novel fuzzy logic model for multiple gas sensor array","authors":"R. Parthasarathy, V. Kalaichelvi, Swaminathan H. Sundaram","doi":"10.1109/ICCSP.2015.7322683","DOIUrl":null,"url":null,"abstract":"Gas sensors have the issue of non linearity, low selectivity and cross sensitivity to other gases which cause a huge aberration from the expected results. These can be alleviated if sensors are integrated and studied. While Artificial Neural Network models are not accurate in identification of complex mixtures of gases, this is improved by using a fuzzy logic model for an array of gas sensors which identifies the presence and the concentration of gases efficiently.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gas sensors have the issue of non linearity, low selectivity and cross sensitivity to other gases which cause a huge aberration from the expected results. These can be alleviated if sensors are integrated and studied. While Artificial Neural Network models are not accurate in identification of complex mixtures of gases, this is improved by using a fuzzy logic model for an array of gas sensors which identifies the presence and the concentration of gases efficiently.
多气体传感器阵列模糊逻辑模型
气体传感器存在非线性、低选择性和对其他气体的交叉灵敏度等问题,导致与预期结果有很大的偏差。如果对传感器进行集成和研究,这些问题可以得到缓解。虽然人工神经网络模型在识别复杂气体混合物方面不准确,但通过对气体传感器阵列使用模糊逻辑模型来有效识别气体的存在和浓度,可以改善这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信