Integrated ANN approach to forecast load

K. Swarup, B. Satish
{"title":"Integrated ANN approach to forecast load","authors":"K. Swarup, B. Satish","doi":"10.1109/67.993760","DOIUrl":null,"url":null,"abstract":"The demand for electricity is known to vary by the time of the day, week, month, temperature, and usage habits of the consumers. Though usage habit is not directly observable, it may be implied in the patterns of usage that have occurred in the past. A short-term load-forecasting (STLF) program that uses an integrated artificial neural network (ANN) approach is capable of predicting load for basic generation scheduling functions, assessing power system security, and providing timely dispatcher information. How well training data is chosen in an ANN is the defining factor in how well the network's output will match the event being modeled.","PeriodicalId":435675,"journal":{"name":"IEEE Computer Applications in Power","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Applications in Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/67.993760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The demand for electricity is known to vary by the time of the day, week, month, temperature, and usage habits of the consumers. Though usage habit is not directly observable, it may be implied in the patterns of usage that have occurred in the past. A short-term load-forecasting (STLF) program that uses an integrated artificial neural network (ANN) approach is capable of predicting load for basic generation scheduling functions, assessing power system security, and providing timely dispatcher information. How well training data is chosen in an ANN is the defining factor in how well the network's output will match the event being modeled.
综合人工神经网络方法预测负荷
众所周知,电力需求会随着一天、一周、一月、温度和消费者使用习惯的不同而变化。虽然使用习惯不能直接观察到,但它可能隐含在过去发生的使用模式中。采用综合人工神经网络(ANN)方法的短期负荷预测(STLF)程序能够预测基本发电调度功能的负荷,评估电力系统的安全性,并及时提供调度员信息。在人工神经网络中,训练数据的选择有多好,是网络输出与被建模事件匹配程度的决定性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信