MMSE speech spectral amplitude estimation assuming non-Gaussian noise

Balázs Fodor, T. Fingscheidt
{"title":"MMSE speech spectral amplitude estimation assuming non-Gaussian noise","authors":"Balázs Fodor, T. Fingscheidt","doi":"10.5281/ZENODO.42434","DOIUrl":null,"url":null,"abstract":"In many applications non-Gaussian noises, such as babble noise, can be observed. In this paper we present a minimum mean square error (MMSE) estimation of the speech spectral amplitude. It principally allows for arbitrary speech spectral amplitude probability density function (pdf) models (Rayleigh, Chi, ...), while the pdf of the noise DFT coefficients is modeled by a Gaussian mixture (GMM). Applying for both approaches an idealized a priori SNR estimator that works well in babble noise, we can show clear improvements compared to the MMSE spectral amplitude estimator with Gaussian noise assumption.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"389 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In many applications non-Gaussian noises, such as babble noise, can be observed. In this paper we present a minimum mean square error (MMSE) estimation of the speech spectral amplitude. It principally allows for arbitrary speech spectral amplitude probability density function (pdf) models (Rayleigh, Chi, ...), while the pdf of the noise DFT coefficients is modeled by a Gaussian mixture (GMM). Applying for both approaches an idealized a priori SNR estimator that works well in babble noise, we can show clear improvements compared to the MMSE spectral amplitude estimator with Gaussian noise assumption.
假设非高斯噪声的MMSE语音频谱幅度估计
在许多应用中,可以观察到非高斯噪声,如咿呀学语噪声。本文提出了一种最小均方误差(MMSE)估计语音频谱幅度的方法。它主要允许任意语音频谱振幅概率密度函数(pdf)模型(Rayleigh, Chi,…),而噪声DFT系数的pdf是由高斯混合(GMM)建模的。将这两种方法应用到一个理想的先验信噪比估计器中,与高斯噪声假设下的MMSE谱幅度估计器相比,我们可以显示出明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信