Tailoring ferromagnetic resonance in bicomponent artificial spin ices

M. T. Kaffash, S. Lendínez, M. Jungfleisch
{"title":"Tailoring ferromagnetic resonance in bicomponent artificial spin ices","authors":"M. T. Kaffash, S. Lendínez, M. Jungfleisch","doi":"10.1109/comcas52219.2021.9629059","DOIUrl":null,"url":null,"abstract":"Magnonic crystals are artificial media in which magnetic properties such as saturation magnetization or relative permeability are periodically modulated in space, allowing for effective control of the magnonic bandstructure by geometrical structuring. From this end, artificial spin ice - arrays of interacting nanomagnets - can be viewed as reprogrammable two-dimensional magnonic crystal. Here, we introduce a new kind of bicomponent artificial spin ice that is made of two dissimilar ferromagnetic metals arranged on complementary lattice sites. It is shown that the resonant dynamics can effectively be controlled based on the distinct magnetic properties of the two materials. We use broadband ferromagnetic resonance to measure the spin-wave eigenmodes of the different sublattices. We compare the ferromagnetic resonance spectra of the single component arrays with the spectrum of a bicomponent system that can be interpreted using a superposition principle. Furthermore, we show that the switching behavior of the sublattices affects one another.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnonic crystals are artificial media in which magnetic properties such as saturation magnetization or relative permeability are periodically modulated in space, allowing for effective control of the magnonic bandstructure by geometrical structuring. From this end, artificial spin ice - arrays of interacting nanomagnets - can be viewed as reprogrammable two-dimensional magnonic crystal. Here, we introduce a new kind of bicomponent artificial spin ice that is made of two dissimilar ferromagnetic metals arranged on complementary lattice sites. It is shown that the resonant dynamics can effectively be controlled based on the distinct magnetic properties of the two materials. We use broadband ferromagnetic resonance to measure the spin-wave eigenmodes of the different sublattices. We compare the ferromagnetic resonance spectra of the single component arrays with the spectrum of a bicomponent system that can be interpreted using a superposition principle. Furthermore, we show that the switching behavior of the sublattices affects one another.
双组分人工自旋冰中铁磁共振的裁剪
磁振子晶体是一种人造介质,其磁性能如饱和磁化或相对磁导率在空间上周期性调制,允许通过几何结构有效控制磁振子带结构。从这方面来看,人工自旋冰——相互作用的纳米磁体阵列——可以看作是可重新编程的二维磁晶体。在这里,我们介绍了一种新的双组分人工自旋冰,它是由两种不同的铁磁性金属排列在互补的晶格位上。结果表明,基于两种材料不同的磁性能,可以有效地控制谐振动力学。我们利用宽带铁磁共振测量了不同亚晶格的自旋波本征模。我们比较了单组分阵列的铁磁共振光谱与可以用叠加原理解释的双组分系统的光谱。此外,我们还证明了子晶格的开关行为是相互影响的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信