{"title":"20.4 An output-capacitor-free analog-assisted digital low-dropout regulator with tri-loop control","authors":"Mo Huang, Yan Lu, S. U, R. Martins","doi":"10.1109/ISSCC.2017.7870401","DOIUrl":null,"url":null,"abstract":"Low-dropout regulators (LDOs) are widely distributed in SoC designs to supply individual voltage domains, and a digital LDO (DLDO) is favorable for its low-voltage operation and process scalability. However, as many SoCs generate a load current (ILOAD) variation at sub-A/ns level, voltage regulators require a large area-consuming output capacitor (COUT) to maintain the output voltage (VOUT) during fast transients. A conventional shift-register (SR)-based DLDO [1] suffers from a power and speed trade-off, thus requires a large COUT. To break the tie and minimize COUT, [2–5] applied coarse-fine tuning and adaptive clocking, but a fast sampling clock is still necessary for instantaneous VOUT sensing. Event-driven control used in [6] reacts fast within one clock cycle, but the ADC (with 7 comparators) and the digital PI controller increase the complexity and power consumption. This work presents an analog-assisted (AA) tri-loop control scheme for transient improvement, low power, and COUT reduction.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
Low-dropout regulators (LDOs) are widely distributed in SoC designs to supply individual voltage domains, and a digital LDO (DLDO) is favorable for its low-voltage operation and process scalability. However, as many SoCs generate a load current (ILOAD) variation at sub-A/ns level, voltage regulators require a large area-consuming output capacitor (COUT) to maintain the output voltage (VOUT) during fast transients. A conventional shift-register (SR)-based DLDO [1] suffers from a power and speed trade-off, thus requires a large COUT. To break the tie and minimize COUT, [2–5] applied coarse-fine tuning and adaptive clocking, but a fast sampling clock is still necessary for instantaneous VOUT sensing. Event-driven control used in [6] reacts fast within one clock cycle, but the ADC (with 7 comparators) and the digital PI controller increase the complexity and power consumption. This work presents an analog-assisted (AA) tri-loop control scheme for transient improvement, low power, and COUT reduction.