Mitigating the Effect of Class Imbalance in Fault Localization Using Context-aware Generative Adversarial Network

Yan Lei, Tiantian Wen, Huan Xie, Lingfeng Fu, Chunyan Liu, Lei Xu, Hongxia Sun
{"title":"Mitigating the Effect of Class Imbalance in Fault Localization Using Context-aware Generative Adversarial Network","authors":"Yan Lei, Tiantian Wen, Huan Xie, Lingfeng Fu, Chunyan Liu, Lei Xu, Hongxia Sun","doi":"10.1109/ICPC58990.2023.00045","DOIUrl":null,"url":null,"abstract":"Fault localization (FL) analyzes the execution information of a test suite to pinpoint the root cause of a failure. The class imbalance of a test suite, i.e., the imbalanced class proportion between passing test cases (i.e., majority class) and failing ones (i.e., minority class), adversely affects FL effectiveness.To mitigate the effect of class imbalance in FL, we propose CGAN4FL: a data augmentation approach using Context-aware Generative Adversarial Network for Fault Localization. Specifically, CGAN4FL uses program dependencies to construct a failure-inducing context showing how a failure is caused. Then, CGAN4FL leverages a generative adversarial network to analyze the failure-inducing context and synthesize the minority class of test cases (i.e., failing test cases). Finally, CGAN4FL augments the synthesized data into original test cases to acquire a class-balanced dataset for FL. Our experiments show that CGAN4FL significantly improves FL effectiveness, e.g., promoting MLP-FL by 200.00%, 25.49%, and 17.81% under the Top-1, Top-5, and Top-10 respectively.","PeriodicalId":376593,"journal":{"name":"2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC58990.2023.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fault localization (FL) analyzes the execution information of a test suite to pinpoint the root cause of a failure. The class imbalance of a test suite, i.e., the imbalanced class proportion between passing test cases (i.e., majority class) and failing ones (i.e., minority class), adversely affects FL effectiveness.To mitigate the effect of class imbalance in FL, we propose CGAN4FL: a data augmentation approach using Context-aware Generative Adversarial Network for Fault Localization. Specifically, CGAN4FL uses program dependencies to construct a failure-inducing context showing how a failure is caused. Then, CGAN4FL leverages a generative adversarial network to analyze the failure-inducing context and synthesize the minority class of test cases (i.e., failing test cases). Finally, CGAN4FL augments the synthesized data into original test cases to acquire a class-balanced dataset for FL. Our experiments show that CGAN4FL significantly improves FL effectiveness, e.g., promoting MLP-FL by 200.00%, 25.49%, and 17.81% under the Top-1, Top-5, and Top-10 respectively.
基于上下文感知生成对抗网络的故障定位中类不平衡的影响
故障定位(FL)分析测试套件的执行信息,以查明故障的根本原因。测试套件的类不平衡,即通过测试用例(即多数类)和失败测试用例(即少数类)之间的类比例不平衡,会对FL的有效性产生不利影响。为了减轻故障定位中类别不平衡的影响,我们提出了CGAN4FL:一种使用上下文感知生成对抗网络进行故障定位的数据增强方法。具体地说,CGAN4FL使用程序依赖关系来构造导致故障的上下文,显示故障是如何引起的。然后,CGAN4FL利用生成对抗网络来分析导致失败的上下文,并综合少数类测试用例(即,失败的测试用例)。最后,CGAN4FL将合成的数据扩充到原始的测试用例中,得到一个类平衡的FL数据集。实验表明,CGAN4FL显著提高了FL的有效性,在Top-1、Top-5和Top-10下,MLP-FL的效率分别提高了200.00%、25.49%和17.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信