An Iterative Deconvolution Algorithm with Exponential Convergence

C. E. Morris, M. A. Richards, M. Hayes
{"title":"An Iterative Deconvolution Algorithm with Exponential Convergence","authors":"C. E. Morris, M. A. Richards, M. Hayes","doi":"10.1364/srs.1986.fb2","DOIUrl":null,"url":null,"abstract":"Iterative deconvolution is an established technique for recovering the input sequence of a linear shift-invariant system given the output sequence and some knowledge about the distorting system [1]. Since the standard approach to iterative deconvolution has a linear convergence rate, some authors have proposed techniques such as gradient search methods [2,3] and kernel splitting [4] to increase the rate of convergence. These methods, however, are either computationally expensive or do not achieve a substantial gain in convergence rate. In this paper we describe an accelerated iterative algorithm that requires slightly more computational time or memory storage than the standard approach while achieving a favorable exponential rate of convergence.","PeriodicalId":262149,"journal":{"name":"Topical Meeting On Signal Recovery and Synthesis II","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting On Signal Recovery and Synthesis II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1986.fb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Iterative deconvolution is an established technique for recovering the input sequence of a linear shift-invariant system given the output sequence and some knowledge about the distorting system [1]. Since the standard approach to iterative deconvolution has a linear convergence rate, some authors have proposed techniques such as gradient search methods [2,3] and kernel splitting [4] to increase the rate of convergence. These methods, however, are either computationally expensive or do not achieve a substantial gain in convergence rate. In this paper we describe an accelerated iterative algorithm that requires slightly more computational time or memory storage than the standard approach while achieving a favorable exponential rate of convergence.
一种指数收敛的迭代反卷积算法
迭代反卷积是一种成熟的技术,用于恢复线性移不变系统的输入序列,给定输出序列和对扭曲系统的一些了解[1]。由于迭代反卷积的标准方法具有线性收敛速度,一些作者提出了梯度搜索方法[2,3]和核分裂[4]等技术来提高收敛速度。然而,这些方法要么在计算上很昂贵,要么在收敛速度上没有获得实质性的增益。在本文中,我们描述了一种加速迭代算法,它比标准方法需要更多的计算时间或内存存储,同时达到有利的指数收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信